老虎机游戏 加密算法里的加密位数和密钥直接的关系是
你的位置:老虎机游戏 > 博彩问答 >

加密算法里的加密位数和密钥直接的关系是

发布日期:2022-04-05 10:34    点击次数:181

加密算法里的加密位数和密钥直接的关系是

加密位数和密钥一般是一一对应的,AES-128要求密钥应该是128位的,有些库可能会在用户密钥基础上进行一定策略的填充。
感兴趣可以查看AES-128的一个算法实现
/* * Advanced Encryption Standard * @author Dani Huertas * @email huertas.dani@gmail.com * * Based on the document FIPS PUB 197 */ #include <stdio.h> #include <stdlib.h> #include <stdint.h> /* * Addition in GF(2^8) * http://en.wikipedia.org/wiki/Finite_field_arithmetic */ uint8_t gadd(uint8_t a, uint8_t b) { return a^b; } /* * Subtraction in GF(2^8) * http://en.wikipedia.org/wiki/Finite_field_arithmetic */ uint8_t gsub(uint8_t a, uint8_t b) { return a^b; } /* * Multiplication in GF(2^8) * http://en.wikipedia.org/wiki/Finite_field_arithmetic * Irreducible polynomial m(x) = x8 + x4 + x3 + x + 1 */ uint8_t gmult(uint8_t a, uint8_t b) { uint8_t p = 0, i = 0, hbs = 0; for (i = 0; i < 8; i++) { if (b & 1) { p ^= a; } hbs = a & 0x80; a <<= 1; if (hbs) a ^= 0x1b; // 0000 0001 0001 1011 b >>= 1; } return (uint8_t)p; } /* * Addition of 4 byte words * m(x) = x4+1 */ void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) { d[0] = a[0]^b[0]; d[1] = a[1]^b[1]; d[2] = a[2]^b[2]; d[3] = a[3]^b[3]; } /* * Multiplication of 4 byte words * m(x) = x4+1 */ void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) { d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]); d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]); d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]); d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]); } /* * The cipher Key. */ int K; /* * Number of columns (32-bit words) comprising the State. For this * standard, Nb = 4. */ int Nb = 4; /* * Number of 32-bit words comprising the Cipher Key. For this * standard, Nk = 4, 6, or 8. */ int Nk; /* * Number of rounds, which is a function of Nk and Nb (which is * fixed). For this standard, Nr = 10, 12, or 14. */ int Nr; /* * S-box transformation table */ static uint8_t s_box[256] = { // 0 1 2 3 4 5 6 7 8 9 a b c d e f 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // a 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // b 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // c 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // d 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // e 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};// f /* * Inverse S-box transformation table */ static uint8_t inv_s_box[256] = { // 0 1 2 3 4 5 6 7 8 9 a b c d e f 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // a 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // b 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // c 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // d 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // e 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};// f /* * Generates the round constant Rcon[i] */ uint8_t R[] = {0x02, 0x00, 0x00, 0x00}; uint8_t * Rcon(uint8_t i) { if (i == 1) { R[0] = 0x01; // x^(1-1) = x^0 = 1 } else if (i > 1) { R[0] = 0x02; i--; while (i-1 > 0) { R[0] = gmult(R[0], 0x02); i--; } } return R; } /* * Transformation in the Cipher and Inverse Cipher in which a Round * Key is added to the State using an XOR operation. The length of a * Round Key equals the size of the State (i.e., for Nb = 4, the Round * Key length equals 128 bits/16 bytes). */ void add_round_key(uint8_t *state, uint8_t *w, uint8_t r) { uint8_t c; for (c = 0; c < Nb; c++) { state[Nb*0+c] = state[Nb*0+c]^w[4*Nb*r+4*c+0]; //debug, so it works for Nb !=4 state[Nb*1+c] = state[Nb*1+c]^w[4*Nb*r+4*c+1]; state[Nb*2+c] = state[Nb*2+c]^w[4*Nb*r+4*c+2]; state[Nb*3+c] = state[Nb*3+c]^w[4*Nb*r+4*c+3]; } } /* * Transformation in the Cipher that takes all of the columns of the * State and mixes their data (independently of one another) to * produce new columns. */ void mix_columns(uint8_t *state) { uint8_t a[] = {0x02, 0x01, 0x01, 0x03}; // a(x) = {02} + {01}x + {01}x2 + {03}x3 uint8_t i, j, col[4], res[4]; for (j = 0; j < Nb; j++) { for (i = 0; i < 4; i++) { col[i] = state[Nb*i+j]; } coef_mult(a, col, res); for (i = 0; i < 4; i++) { state[Nb*i+j] = res[i]; } } } /* * Transformation in the Inverse Cipher that is the inverse of * MixColumns(). */ void inv_mix_columns(uint8_t *state) { uint8_t a[] = {0x0e, 0x09, 0x0d, 0x0b}; // a(x) = {0e} + {09}x + {0d}x2 + {0b}x3 uint8_t i, j, col[4], res[4]; for (j = 0; j < Nb; j++) { for (i = 0; i < 4; i++) { col[i] = state[Nb*i+j]; } coef_mult(a, col, res); for (i = 0; i < 4; i++) { state[Nb*i+j] = res[i]; } } } /* * Transformation in the Cipher that processes the State by cyclically * shifting the last three rows of the State by different offsets. */ void shift_rows(uint8_t *state) { uint8_t i, k, s, tmp; for (i = 1; i < 4; i++) { // shift(1,4)=1; shift(2,4)=2; shift(3,4)=3 // shift(r, 4) = r; s = 0; while (s < i) { tmp = state[Nb*i+0]; for (k = 1; k < Nb; k++) { state[Nb*i+k-1] = state[Nb*i+k]; } state[Nb*i+Nb-1] = tmp; s++; } } } /* * Transformation in the Inverse Cipher that is the inverse of * ShiftRows(). */ void inv_shift_rows(uint8_t *state) { uint8_t i, k, s, tmp; for (i = 1; i < 4; i++) { s = 0; while (s < i) { tmp = state[Nb*i+Nb-1]; for (k = Nb-1; k > 0; k--) { state[Nb*i+k] = state[Nb*i+k-1]; } state[Nb*i+0] = tmp; s++; } } } /* * Transformation in the Cipher that processes the State using a non­ * linear byte substitution table (S-box) that operates on each of the * State bytes independently. */ void sub_bytes(uint8_t *state) { uint8_t i, j; uint8_t row, col; for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { row = (state[Nb*i+j] & 0xf0) >> 4; col = state[Nb*i+j] & 0x0f; state[Nb*i+j] = s_box[16*row+col]; } } } /* * Transformation in the Inverse Cipher that is the inverse of * SubBytes(). */ void inv_sub_bytes(uint8_t *state) { uint8_t i, j; uint8_t row, col; for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { row = (state[Nb*i+j] & 0xf0) >> 4; col = state[Nb*i+j] & 0x0f; state[Nb*i+j] = inv_s_box[16*row+col]; } } } /* * Function used in the Key Expansion routine that takes a four-byte * input word and applies an S-box to each of the four bytes to * produce an output word. */ void sub_word(uint8_t *w) { uint8_t i; for (i = 0; i < 4; i++) { w[i] = s_box[16*((w[i] & 0xf0) >> 4) + (w[i] & 0x0f)]; } } /* * Function used in the Key Expansion routine that takes a four-byte * word and performs a cyclic permutation. */ void rot_word(uint8_t *w) { uint8_t tmp; uint8_t i; tmp = w[0]; for (i = 0; i < 3; i++) { w[i] = w[i+1]; } w[3] = tmp; } /* * Key Expansion */ void key_expansion(uint8_t *key, uint8_t *w) { uint8_t tmp[4]; uint8_t i, j; uint8_t len = Nb*(Nr+1); for (i = 0; i < Nk; i++) { w[4*i+0] = key[4*i+0]; w[4*i+1] = key[4*i+1]; w[4*i+2] = key[4*i+2]; w[4*i+3] = key[4*i+3]; } for (i = Nk; i < len; i++) { tmp[0] = w[4*(i-1)+0]; tmp[1] = w[4*(i-1)+1]; tmp[2] = w[4*(i-1)+2]; tmp[3] = w[4*(i-1)+3]; if (i%Nk == 0) { rot_word(tmp); sub_word(tmp); coef_add(tmp, Rcon(i/Nk), tmp); } else if (Nk > 6 && i%Nk == 4) { sub_word(tmp); } w[4*i+0] = w[4*(i-Nk)+0]^tmp[0]; w[4*i+1] = w[4*(i-Nk)+1]^tmp[1]; w[4*i+2] = w[4*(i-Nk)+2]^tmp[2]; w[4*i+3] = w[4*(i-Nk)+3]^tmp[3]; } } void cipher(uint8_t *in, uint8_t *out, uint8_t *w) { uint8_t state[4*Nb]; uint8_t r, i, j; for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { state[Nb*i+j] = in[i+4*j]; } } add_round_key(state, w, 0); for (r = 1; r < Nr; r++) { sub_bytes(state); shift_rows(state); mix_columns(state); add_round_key(state, w, r); } sub_bytes(state); shift_rows(state); add_round_key(state, w, Nr); for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { out[i+4*j] = state[Nb*i+j]; } } } void inv_cipher(uint8_t *in, uint8_t *out, uint8_t *w) { uint8_t state[4*Nb]; uint8_t r, i, j; for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { state[Nb*i+j] = in[i+4*j]; } } add_round_key(state, w, Nr); for (r = Nr-1; r >= 1; r--) { inv_shift_rows(state); inv_sub_bytes(state); add_round_key(state, w, r); inv_mix_columns(state); } inv_shift_rows(state); inv_sub_bytes(state); add_round_key(state, w, 0); for (i = 0; i < 4; i++) { for (j = 0; j < Nb; j++) { out[i+4*j] = state[Nb*i+j]; } } } int main(int argc, char *argv[]) { uint8_t i; /* * Appendix A - Key Expansion Examples */ /* 128 bits */ /* uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}; */ /* 192 bits */ /* uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b}; */ /* 256 bits */ /* uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4}; */ /* uint8_t in[] = { 0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34}; // 128 */ /* * Appendix C - Example Vectors */ /* 128 bit key */ /* uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; */ /* 192 bit key */ /* uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17}; */ /* 256 bit key */ uint8_t key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}; uint8_t in[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}; uint8_t out[16]; // 128 uint8_t *w; // expanded key switch (sizeof(key)) { default: case 16: Nk = 4; Nr = 10; break; case 24: Nk = 6; Nr = 12; break; case 32: Nk = 8; Nr = 14; break; } w = malloc(Nb*(Nr+1)*4); key_expansion(key, w); cipher(in /* in */, out /* out */, w /* expanded key */); printf("out:\n"); for (i = 0; i < 4; i++) { printf("%x %x %x %x ", out[4*i+0], out[4*i+1], out[4*i+2], out[4*i+3]); } printf("\n"); inv_cipher(out, in, w); printf("msg:\n"); for (i = 0; i < 4; i++) { printf("%x %x %x %x ", in[4*i+0], in[4*i+1], in[4*i+2], in[4*i+3]); } printf("\n"); exit(0); }https://github.com/dhuertas/AES/blob/master/aes.c

这一点我们在“控制下家”一节内已经讲过,应该随时记牢别家所打的牌的先后,同时可以猜想——他为什么先打那一张,后打这一张呢?其中必有道理。譬如:上家先打二筒,后打四筒。他也许是拆搭子;也许是打二筒时抓进一张五筒,而打四筒时已抓进六筒(因为有四筒一对)老虎机,或者仍旧留有三、六筒搭子;也许是打二筒时抓进一张六筒,而打四筒时抓进一张七筒。倘若上家先打四筒,后打二筒。

其次:根据自己的牌型老虎机,如果自己已经听牌且番数不小这时就不要顾虑是否放炮,如果没听牌或者番数小宁可不胡牌也不要放炮。



友情链接:

TOP